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Abstract:

1. Introduction

The 2011 Fukushima Daiichi nuclear power plant accident has stimulated the active development
of accident-tolerant fuels (ATFs) and accident-tolerant cores. In recent years, silicon carbide (SiC)
fiber-reinforced SiC matrix (SiC/SiC) composites have attracted increasing attention as an alterna-
tive material for fuel cladding in light water reactors (LWRs) [11]. Extensive experimental research
showed that the SiC/SiC composites can retain excellent mechanical properties under high tempera-
ture and neutron irradiation conditions. Compared to traditional Zirconium alloy cladding and core,
which would produce explosive hydrogen in a water vapor environment, SiC/SiC composites exhibit
general chemical inertness at very high temperature [25]. Moreover, they are also stable under irradi-
ation. Owing to these attractive features, SiC/SiC composites are considered favorably as a promising
material that provides passive safety for LWRs in beyond-design-basis severe accident scenarios [29].

For LWR claddings, SiC/SiC composites are fabricated in the form of long tubes. A number of
investigations were performed on mechanical the behaviors of SiC/SiC composite tubes under different
loading scenarios including uniaxial tension, internal pressure, and multiaxial loading [19, 5, 6, 21].
It was observed that, under uniaxial loading, the specimen first exhibits a linear elastic behavior up
to a stress level, which is referred to as the proportional limit stress (PLS). Beyond this stress, the
matrix material experiences damage, which is manifested by a degradation of elastic stiffness. The
progression of matrix damage eventually leads to localized fiber break, and the specimen attains its
ultimate tensile strength (UTS). Upon further displacement-controlled loading, the specimen would
exhibit a softening behavior. For the purpose of cladding design, the PLS and UTS are two critical
metrics. The PLS indicates the stress level at damage initiation, which poses risk of loss of fission
gas retention, whereas at UTS the structure experiences extensive damage, which deteriorates its
load capacity. An inter-laboratory round robin study was recently performed to measure axial tensile
properties of same batch of SiC/SiC composites tubular specimens. 43 specimens were tested and it
was reported that the coefficients of variation of PLS and UTS are 9.7% and 12.5%, respectively [22].

The randomness of strength of SiC/SiC composites can be attributed to the heterogeneity of the
material. In the manufacturing process, the SiC matrix is deposited from gaseous reactants on to
a heated substrate of fibrous preforms (SiC) [13]. This process, called Chemical Vapour Infiltration
(CVI), inevitably introduces internal pores in the matrix. It was reported that the porosity of CVI
SiC/SiC composites is in the range of 8-17% [12, 5]. By using computed X-ray tomography, it has
observed that the large pores between fiber tows are crucial to damage development compared to small
pores [20]. The size and location of these internal pores are inherently random causing randomness in
both local stress field and material resistance and consequently the macroscopically observed variability
in PLS and UTS.

The randomness of PLS and UTS has important implications for design of SiC/SiC composite
claddings. It is widely acknowledged that engineering structures must be designed against an ac-
ceptable risk level. In the current design approach, an empirical reduction factor is applied to the
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PLS to account for its uncertainty [17]. This concept is similar to the safety factors used in design
of concrete and steel structures. The safety factors allow us to perform reliability-based structural
design through deterministic analysis. The essential step is to relate the safety factors to the failure
risk of the structure [8, 14, 2]. Evidently this relation must be derived from a probabilistic model of
structural failure.

In recent years, considerable attention has been directed towards investigation of the failure statis-
tics of SiC/SiC composites. Previous studies have largely used the two-parameter Weibull distribution
for the probability distributions of PLS and UTS [22, 24, 7]. The Weibull distribution belongs to the
class of extreme value statistics [27, 28, 26, 2], which indicates that the failure statistics of the struc-
ture can be represented by an infinite weakest-link model. Physically it implies a damage localization
mechanism and furthermore that the structure is much larger than the size of the damage zone. A
series of recent studies discussed the applicability of the Weibull distribution for strength statistics
of structures made of quasibrittle materials, such as composites and ceramics, which feature a strain
softening behavior and damage localization mechanism [3, 1, 16, 2]. It was shown that, for most qua-
sibrittle structures, the structure size is not sufficiently large to guarantee the validity of the Weibull
distribution. The same issue also applies to SiC/SiC composite tubes. The laboratory test specimen
is less than 100 mm long, which is not significantly larger than the size of the damage zone. There-
fore, the classical Weibull model cannot be used to extrapolate the laboratory test result to full-scale
cladding design.

In addition to the inapplicability of the Weibull distribution for design extrapolation, probabilistic
modeling of SiC/SiC composite tubes is further complicated by the time evolution of applied loading.
A thermomechanical analysis was recently performed to investigate the loading history of the SiC/SiC
cladding over its service lifetime [4, 23]. It was shown that the cladding experiences complicated time-
dependent loading along axial and hoop directions in LWRs. To model the lifetime of the cladding, it
is crucial to take into account of the damage accumulation mechanism. The failure probability of the
entire structure at the present time is not only dependent on current stress state but also on the prior
loading history. So far, such a time-dependent model has not been investigated.

In this study, we develop a time-dependent probabilistic model for lifetime of SiC/SiC cladding.
The model is anchored by integration of a finite weakest-link statistical model and a time-dependent
damage accumulation model. The paper is planned as follows: Section 2 discusses the time-dependent
failure model; Section 3 describes the finite weakest-link model; Section 4 applies the model to reliabil-
ity analysis of SiC/SiC cladding, and Section 5 discusses the result of the analysis and its implications.

2. Probabilistic Time-Dependent Failure Model

Over the past years, extensive efforts were devoted toward laboratory testing of SiC/SiC tube speci-
mens, and major advances have been made [19, 5, 6, 21]. The development of experimental techniques
led to an improved understanding of the failure behavior of laboratory test specimens. The laboratory
specimens usually have the same cross-sectional dimension as the fuel cladding, but the specimen
length is about two orders of magnitude shorter than the cladding. The essential question is how
to predict the failure statistics of the full-size cladding from the laboratory test results. For such a
prediction, we first need a robust probabilistic model for the failure of the test specimen.

Consider a laboratory test specimen under general loading (axial load F , internal pressure p, and
torsion T ). The structural design is largely concerned with the load carrying capacity, which can be
described by the strength-based failure criterion. To formulate such a criterion, we first define the
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following nominal stresses:

σθθ =
r2i (r

2
m + r2e)

r2m(r2e − r2i )
p (1)

σzz =
F + pπr2i
π(r2e − r2i )

(2)

σzθ =
3T

2π(r3e − r3i )
(3)

where ri, re are the inner and outer radius of the specimen, respectively, and rm = 0.5(ri+ re). While
these nominal stresses can be considered as load parameters in the dimension of stress, they physically
represent the homogenous elastic stresses of the test specimen.

Here we consider that the specimen will fail under control loads once the following criterion is met
[5]:

F (σi, ki) = k1⟨σ1⟩2 + k1⟨σ2⟩2 + k2⟨σ1⟩⟨σ2⟩+ k3σ
2
3 − 1 ≥ 0 (4)

where σ1, σ2 = in-plane principal elastic stresses, σ3 = σθθ−σzz, ki (i = 1, 2, 3) = model constants, and
⟨x⟩ = Macaulay bracket= max(x, 0). By considering some specific loading scenarios, such as uniaxial
tension, uniaxial compression, and equi-biaxial tension, we can express ki’s by

k1 =
1

f2t
− 1

f2c
; k2 =

1

f2b
− 2k1; k3 =

1

f2c
(5)

where ft, fc and fb denote the nominal strengths of the specimen corresponding to the uniaxial tensile,
uniaxial compressive, and biaxial tensile stress states, respectively. It is worthwhile to note that the
nominal strengths are structural properties, which could vary with the specimen length. Therefore,
the failure criterion itself (Eq. 4) is dependent on the specimen length.

By considering the nominal strengths as random variables, the failure probability of the test spec-
imen under given loading can be expressed by

Pf (σi) = 1− Pr[F (σi, ft, fc, fb) ≤ 0] (6)

= 1−
∫∫∫

Ω
f(x, y, z)dxdydz (7)

where x, y, z denote the random values of ft, fc, and fb, respectively, Ω denotes the region of
F (σi, x, y, z) ≤ 0, and f(x, y, z) is the joint probability density function (pdf) of random variables ft,
fc, and fb.

The foregoing analysis is anchored by a strength-based failure criterion. In actual applications,
the SiC/SiC claddings are subjected to time-dependent loading, which is lower than the structural
strength. The key design parameter is the structural lifetime. Therefore, it is necessary to reformulate
the failure criterion (Eq. 4) for calculating the lifetime. To this end, we consider a damage kinetics
model, through which the nominal strengths can be related to the specimen lifetime. Following the
framework of continuum damage mechanics [18, 9, 10], we introduce a damage parameter ω, which
ranges from 0 (intact) to 1 (fully damaged).

dω

dt
=

ϕ(ω)

[k − g(σi)]
n (8)

where g(σi) = k1⟨σ1⟩2 + k1⟨σ2⟩2 + k2⟨σ1⟩⟨σ2⟩+ k3σ
2
3, and k, n are constants.

Note that constants ki’s are related to the uniaxial tensile, compressive, and equi-biaxial tensile
strengths. The damage kinetics model implies that the monotonic nominal strengths would depend on
the loading rate. Let rt, rc, and rb denote the loading rates used in the uniaxial tensile, compressive,
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and equi-biaxial tensile experiments, respectively. These experiments directly measure the nominal
strengths and consequently constants ki’s.

To relate the monotonic nominal strengths to the specimen lifetime, we now consider two loading
protocols: 1) reference linearly ramped loading and 2) general time-dependent loading. For the ref-
erence linearly ramped loading, we consider σi = rit, where r1 = rt + rb, r2 = rb, and r3 = rt + rc.
These reference loading rates are determined by superimposing the loading rates used in the relevant
strength tests. By applying the separation of variables to Eq. 8, we can express the relation between
the damage extent and the by ∫ ωc

0

dω

ϕ(ω)
=

∫ tc

0

dt

(k − αt2)n
(9)

where α = k1⟨r1⟩2+k1⟨r2⟩2+k2⟨r1⟩⟨r2⟩+k3r23, ωc = critical damage extent at which the specimen fails
under load controlled test, and tc = time at failure. Meanwhile, the strength-based failure criterion
(Eq. 4) indicates αt2c = 1, which yields tc = α−1/2. By substituting the expression of tc into Eq. 9,
we obtain ∫ ωc

0

dω

ϕ(ω)
= C/

√
α (10)

where C =
∫ 1
0 (k − x2)−ndx.

Now we consider a general loading history, for which the stress components are expressed by
σ1(t) = ftψ1(t), σ2(t) = ftψ2(t), and σ3(t) = ftψ3(t) ”here we need to define ft, which distinguish
from previous ft, maybe we can just use ψ(t)”. Meanwhile, applying the same analysis of the kinetics
model to this general loading case yields∫ ωc

0

dω

ϕ(ω)
=

∫ tf

0

dt{
k −

[
k1⟨ψ1(t)⟩2 + k1⟨ψ2(t)⟩2 + k2⟨ψ1(t)⟩⟨ψ2(t)⟩+ k3ψ2

3(t)
]
f2t

}n (11)

where tf = failure time, or the specimen lifetime.
Since the damage growth law (Eq. 8) is formulated for multi-axial loading scenarios, we postulate

that for any arbitrary loading the specimen would fail at the same critical damage extent. By equating
Eqs. 9 and 11, we obtain∫ tf

0

dt{
k −

[
k1⟨ψ1(t)⟩2 + k1⟨ψ2(t)⟩2 + k2⟨ψ1(t)⟩⟨ψ2(t)⟩+ k3ψ2

3(t)
]
f2t

}n = C/
√
α (12)

from which we can solve tf . By considering ft, fb and fc as random variables, we can perform Monte
Carlo simulation to determine the probability distribution of tf (i.e. lifetime distribution) of the
laboratory specimen for a given loading history. This probability distribution exactly equals to the
failure probability Pfs of the specimen at any given time t, i.e. Pr(tf ≤ t) = Pfs(t).

3. Finite Weakest-Link Model for Design Extrapolation

The foregoing analysis focuses on the failure of laboratory specimens, which are far shorter than the
actual LWR claddings. To extrapolate the lifetime distribution of laboratory specimens to the LWR
cladding, we need to rely on a statistical model that is consistent with the failure mechanism. In
this study, we adopt the finite weakest-link model, which indicates that the specimen survives only
if all the material elements survive. This physically represents the damage localization mechanism,
which is a salient feature of the failure of quasibrittle materials, a class of materials which the SiC/SiC
composites belongs to.

We first apply the finite weakest-link model to the laboratory specimens. We consider that, at
failure, damage would localize into one material element. The size of this material element is related
to the width of the fracture process zone. For SiC/SiC composites, the size of the material element
which damage localizes is expected to be on the order of the tow width (≈ 1.2 mm). By assuming
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that the failure statistics of each material element is statistically independent, the failure probability
Pfs(t) of the specimen subjected to a general loading history can be calculated by

Pfs(t) = Pr(tf ≤ t) = 1− [1− P1(t)]
ns (13)

where P1(t) = failure probability of one material element, and ns = number of material elements in
the specimen. Eq. 13 is written by assuming that the all the material elements experience the same
stress field. Based on Eq. 13, we can write P1(t) as

P1(t) = 1− [1− Pfs(t)]
1/ns (14)

Now we consider an actual SiC/SiC cladding. Recent studies have shown that during its service
lifetime the cladding experiences a non-uniform stress distribution. To account for the non-uniformity
of the stress field, we can write the finite weakest-link model as

Pf (t) = 1−
n∏

j=1

[1− P1(σj , t)] (15)

where n = number of material elements in the cladding, and σj = a vector containing the stress com-
ponents σi for jth material element. Eq. 15 can be conveniently rewritten by taking the logarithmic,
which will allow us to replace the product by a summation. Since there are many elements in the
cladding, we can write the summation by integration, which gives

Pf (t) = 1− exp

{
1

V0

∫
V
ln {1− P1[σ(x, t), t]} dV

}
(16)

where V0 = volume of one material element. By substituting Eq. 14 into Eq. 16, we have

Pf (t) = 1− exp

{
1

Vs

∫
V
ln {1− Pfs[σ(x, t), t]} dV

}
(17)

where Vs = volume of laboratory test specimen. Pfs[σ(x, t), t] represents the failure probability of
the test specimen at time t when subjected to stress history σ(t) that is experienced by material
point located at x. As mentioned in Sec. 2, Pfs[σ(x, t), t] can be calculated through Monte Carlo
simulations based on the known cdf’s of ft, fb and fc through Eq. 12.

Eq. 17 provides a closed-form relationship between the failure statistics of test specimen and the
full-size cladding. The model captures both the effects of size and the time-varying load history on
the failure probability of the SiC/SiC claddings. As indicated by Eq. 17, for a given load history, an
increase in specimen size would lead to an increase in failure probability. This is the key prediction
of the present model, which has important consequence for extrapolation of laboratory test results to
full-size design. Meanwhile, the use of Pfs[σ(x, t), t] indicates that the failure probability at any given
time depends on not only the current stress state, but also the previous load history. This dependence
arises from the damage kinetics model, which naturally captures the effect of load path on the damage
accumulation. The size effect and effect of damage kinetics model on the failure probability will be
demonstrated numerically in the subsequent section.

4. Reliability Analysis of SiC/SiC Claddings

In order to demonstrate the effectiveness of our model, one of current themo-mechanical analysis [23]
was selected. Stress evolution profile from that analysis was introduced to our probabilistic time-
dependent model and finite weakest-link model. Thus a reliability analysis was performed on SiC/SiC
cladding simulated under normal operation conditions. Figure 1 showed an overview of our analysis
procedure.
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In the foregoing themo-mechanical analysis, stress history of a 4m length SiC/SiC composites
cladding under the service time of 2 years was simulated by Abaqus, which took into account the
effect of external pressure, internal pressure, temperature and irradiation induced swelling [23]. The
SiC/SiC cladding would experience compression in both axial and hoop direction at the beginning
due to initial external pressure and gradually gain towards tension majorly due to the increase of
internal pressure. Figure 2 showed variation of axial and hoop stress with time at axial mid-plane of
the cladding inner surface. It can be seen that the rate of increase of hoop stress was bigger than that
for the axial stress. This can be explained simply by the relation of stresses with the internal pressure
for thin-walled cylindrical structure, which is the rate of increase of hoop stress is twice of that for the
axial stress.

At the end of 24 months, the maximum tension would occur at the inner surface of the cladding,
with 51 MPa tensile stress in axial direction and 73 MPa tensile stress in hoop direction [23]. Figure
3 showed variation of axial and hoop stresses at the inner surface along the height of the cladding
during the end of 24 months. It can be seen that for most of the range in height, cladding would
experience stress close to maximum tensile stress. The kink close to the end of the cladding was due
to irradiation induced swelling under lower temperate. With those stress tensor input, we calculated in-
plane principle stresses and eliminate all the compression at early time stage to satisfy the requirements
of failure criterion is Eq. 4.

Now for each simulation element in Abaqus, we input the calculated stress data into our model, as
well as the strength parameters sampled from Monte Carlo Simulation. During each sampling process,
once the failure time tf was calculated based on Eq. 12, it would be appended into an array of failure
time. The array would be sorted after all the simulation for this element was finished. The failure
probability of laboratory specimen under this specific loading history σ(x, t) was then derived from
this sorted array. A detailed computational procedure for this part is listed in Algorithm 1.

Algorithm 1 Probabilistic Time-Dependent Failure Model Algorithm

1: for Every material element in simulation do
2: Find its loading history σ(x, t)
3: Array tf array = [ ]
4: Monte Carlo sampling ft, fb, fc ∼ Prob(σN )
5: for Every sampling of (ft, fb, fc) do
6: Calculate its corresponding k1, k2, k3
7: Solve tf based on Eq. 12
8: Append tf in tf array
9: end for

10: Sort tf array
11: Calculate Pfs based on sorted tf array
12: end for

In order to appropriately represent strength statistics of SiC/SiC composites, a multi-scale statis-
tical model was chosen [3, 15, 16]. Probability distribution Prob(σN ) that strength parameters ft, fb
and fc need to follow has the following functional form of the cumulative distribution function (CDF)
in Eq. 18. It was shown that Prob(σN ) can be approximated as a Gaussian distribution onto which a
Weibull distribution (or equivalently a power-law function) is grafted at a probability of 10−4 to 102,
i.e.

Prob(σN ) =

 1− e(σN/so)m (σN ≤ σgr)

Pgr +
rf

δG
√
2π

∫ σN

σgr
e
− (σ−µG)2

2δ2
G dσ (σN ≥ σgr)

(18)
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In Eq. 18, m and s0 are Weibull modulus and the scale parameter of the Weibull tail; µG and δG
are mean and standard deviation of the Gaussian core, if considered extended to −∞; rf is scaling
parameter required to normalize the grafted CDF such that P1(∞) = 1; σgr is grafting stress and Pgr =
1 − e(σgr/so)m is grafting probability between 10−4 to 102; The continuity of the probability density
function (PDF) at the grafting point requires that [dP1/dx]σ+

gr
= [dP1/dx]σ−

gr
. Specific parameter

values chosen for this statistical model would come from a set of laboratory experiments of different
loading paths. However, since none multi-axial histogram tests have been conducted for SiC/SiC
specimens so far, parameters such as Weibull modulus m and standard derivation δG cannot be
determined specifically now. In this paper, We would use published deterministic test results as
the mean values µG of our strength parameters [5]. They were derived from material constants
k1 = 5.5 × 10−5 MPa−2, k2 = −3.7 × 10−5 MPa−2 and k3 = 0.9 × 10−5 MPa−2. We would set
m = 20 for unaxial tension, bi-axial tension and unaxial compression PLS, which is in the range of
typical values for ceramic material. Standard derivation δft, δfb and δfc were chosen to be 25 MPa,
25 MPa, and 30 MPa respectively and grafting probability Pgr was chosen to be 3 × 10−2 for all.
Other parameters such as rf , s0 and σgr can be calculated based on above known parameters and
distribution relations. As explained before, this multi-scale statistical model together with the finite
weakest link model, fully describes the gradual change from ductile to brittle behaviour of quasi-brittle
material of different sizes, which can overcome the inapplicability of the Weibull distribution for design
extrapolation.

After all the failure probabilities for laboratory specimens Pfs under various loading history in
themo-mechanical analysis were calculated, we then used Eq. 16 to sum up all the elements’ failure
value and calculate the failure probability for entire cladding. Till now, we went through the whole
procedure of performing reliability analysis on SiC/SiC cladding that simulated under normal oper-
ation conditions. We ran our analysis with various of kinematic constant n and cladding lengths L
in order to illustrate our model can accommodate the difficulty in counting stress-time evolution and
design extrapolation. We presented our results in the subsequent section.

5. Results and Discussion

In Figure 4, we presented the failure probability of one specimen with the uniform stress profile
illustrated in Figure 2. Within first 5 months, as stress mostly stays in its compression region, failure
probability tends to be zero. When tensile stress starts to generate and increases linearly with respect
to time, failure probability of the specimen increases almost exponentially and stays peak at the end
of 24 months. This relation can be explained by the damage kinematic we proposed in Eq. 8, as the
damage growth rate can be approximated linearly proportional to n-th power of stress. Moreover,
compared to time-independent model, failure probability in our model would always increase. This
phenomena obeys the intrinsic idea of damage growth mechanism. Once the damage initializes and
propagates, the structure would not be reversely healed and its capacity of resisting to load would
continuously decrease. In Figure 5, we showed the failure probability along the height of inner surface.
It can be seen that the log scale profile of failure probability also matches the stress profile showed in
Figure 3. This indicates that the failure of the entire structure is most likely to be governed by high
stress region. In Figure 6, the failure probability of our time-dependent model with different growth
rate coefficients n were presented. With the increase value of n, the failure probability of the entire
structure would decrease and approach time-independent results. This trends can also be revealed
by Eq. 8. For a monotonically increasing loading history, as n approaches ∞, the damage growth is
only dependent on the maximum stress state which is the current stress state. So the time-dependent
model would conform to time-independent model. And since failure is only depend on current stress
level but not on the combination of stress history, the failure probability would become smaller. This
means our time-dependent model would outcome a higher failure probability which leads to a more
conservative design. It can also shown that, with typical values of n ranging from 20 to 50, the failure
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probability of the entire structure can dramatically varies from close to 1 to only 0.001. This indicates
n’s value need to be carefully determined by calibration tests and its sensitivity to perturbation need
to be analyzed in future. Currently calibration tests are performed by applying SiC/SiC composites
with same loading configuration but different loading rate. n values can be reversely calculated based
on Eq. 11 with the measurement of ultimate stress. We also showed in Figure 7 the failure probability
of SiC/SiC structures with different sizes. As shown in the figure, failure probability of the entire
structure would increase linearly at log scale with the increase of specimen size. From that, we
demonstrated the benefit of using finite weakest link model. The failure probability of entire structure
not only depends on the stress history, but is also a function of structure size. Larger structure is
more vulnerable and the framework which extrapolates smaller lab test specimen results to predict
large structure performance is critical.

6. Conclusions
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neering University Program of the Department of Energy under grant DE-NE0008785.
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Figure 1: Overview of our reliability analysis .
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Figure 2: Variation of axial and hoop stress with time, at axial mid-plane of the inner surface .
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Figure 3: Variation of axial and hoop stresses with height, at the inner surface and end of 24 months
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Figure 4: Specimen failure probability with time, stress at axial mid-plane of the inner surface .
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Figure 5: Specimen failure probability with height, at the inner surface and end of 24 months
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Figure 6: Cladding failure probability with different n values .
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Figure 7: Failure probability for different lengths of cladding .
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