
Replication Assignment
LEAH AJMANI, CHEN HU, and RUIXUAN SUN
In this paper, we replicate and extend Ludewig et al’s Effective Nearest-
Neighbor for Music Recommendations. The original system was a submission

to the RecSys18 Challenge sponsored by Spotify, which was an open call

for solutions to the playlist continuation task. We report on the difficulties

and result discrepancies we encountered while attempting to reproduce

Ludewig et al’s work. We then extend their original system in four ways: (1)

We evaluate the recommender on different size of datsets. (2) By adding an

SVD-based approach to their hybrid recommender, we find that our SVD

algorithm doesn’t beat the best individual algorithm in the original paper,

but improves the performance of the combined recommender. (3) We add

pearson similarity as parameter tuning (4) We continue adding to Ludewig

et al’s work by evaluating the system across recall, f1 and RMSE. Our results

evidence that the original authors were optimizing for performance on

the competition metrics. Namely, R-precision, clicks and NDCG. Finally,

we discuss how our experience with replication highlights tensions within

recommender systems, such as the disparity between open source code and

replicable code, as well as how replication is a powerful tool for justifying

design decisions. Moreover, we acknowledge how this task deviates form

traditional user-item-ratings based methods. Future work could replicate

Ludewig et al’s extension with external data, replicate later work on the

same task or explore other music recommendation tasks.

ACM Reference Format:
Leah Ajmani, Chen Hu, and Ruixuan Sun. 2021. Replication Assignment. 1,

1 (February 2021), 4 pages.

1 INTRODUCTION
As music consumption shifts from physical albums towards online

audio streaming, listening to playlists has become a popular habit

for most music consumers in recent years. Automated playlist con-

tinuation is a common feature of online music platform. However,

effectively suggesting the next track to play is an increasing and

important problem for media streaming companies such as Spotify.

During 2018 ACM RecSys Challenge, Spotify published the Million

Playlist Dataset (MPD) for all the participating teams to study the

automated playlist continuation problem. Several peer reviewed

papers have been published by different teams to demonstrate their

approaches and algorithms [4]. Both traditional methods, such as

collaborative filtering and state-of-the-art methods, such as neural

networks, were submitted to the challenge. Even though fashion

deep learning methods have proven its advantages, traditional meth-

ods such as k-NN and collaborative filtering still output competitive

performance. These methods can also be less time and resource in-

tensive compared to their deep learning counterparts. Therefore, it’s

still worthwhile to investigate and extend the collaborative filtering

methods in the scope of the Spotify MPD challenge.

Furthermore, reproduction and replication of recommender sys-

tems has become increasingly important to the field. The aim of

replication is to both confirm the conclusions drawn by authors in

Authors’ address: Leah Ajmani; Chen Hu; Ruixuan Sun.

© 2021

XXXX-XXXX/2021/2-ART $15.00

https://doi.org/

Fig. 1. Composition of Ludewig et al’s hybrid recommender [2]

the original paper and see if new ideas or approaches are applicable.

Unsuccessful reproduction can reshape the current view of field and

indicate the authors may emphasize the novelty or importance of

their work too aggressively. Moreover, replication also stimulates

the original paper authors to keep their code neat for followers and

promote the whole research field to make more reproducible work.

In consequence, replication work has become essentially important

in current research field.

Based on the foregoing reasons, we attempt to replicate and ex-

tend one of the papers Efficient Nearest Neighbor Music Recom-
mendations published by Ludewig et al [2] in RecSys18 Challenge,

while other papers are also attempted by a glance. We first repeat

their original analysis on the same Spotify dataset to see if we can

reproduce the results in their paper as well as forming a basic un-

derstanding of the problem. We then explore extensions along four

dimensions: (1) data, (2) technical approach, (3) parameters and (4)

evaluation. We start by sampling the original dataset to produce a

small dataset containing 50k playlists, and then extend the playlist

size to be 50k, 100k, 500k and lastly the complete 1m to see if the

results shows consistency. Besides, We write our own SVD-based

approach and compare with the authors’ efficient nearest neighbor

algorithm and integrate our SVD model into Ludewig et al’s com-

bined recommender. Thirdly, We explore how tuning the original

cosine similarity metric affects our results. Finally, we add RMSE,

Recall, and F1 score as additional evaluation metrics.

We found a lot of evidence to support Ludewig et al’s design

decisions such as using cosine similarity and optimizing for perfor-

mance on rp and NDCG over metrics such as recall, F1 and RMSE.

While we were eventually able to make our SVD algorithm work,

the individual performance of that was not as good as the algorithms

chosen by the original paper. SVD algorithm has intrinsic drawback

of adding new user/playlist while the original paper succeed to deal

with cold start problem. However, the parameter tuning, evaluation

metrics and additional algorithm we add strengthen the robustness

of the whole system, thus would gain better performance for future

online evaluation.

2 PREVIOUS WORK
In 2018, the annual RecSys challenge focused on music recommen-

dation. Specifically, the challenge of automatic playlist continuation.

By suggesting appropriate songs to add to a playlist, a Recommender

System can increase user engagement by making playlist creation

, Vol. 1, No. 1, Article . Publication date: February 2021.

https://doi.org/

2 • Ajmani, Hu & Sun

easier, as well as extending listening beyond the end of existing

playlists [1].

Ludewig et al [2] proposed a nearest-neighbor based system that

ranked 7th in the “main" track, which used a provided dataset, and

3rd in the “creative" track, where they were allowed the use of exter-

nal public sources [4]. Their approach was a hybrid recommender

(See Figure 1) that combined the following approaches:

Track-based approaches. For playlists that already included tracks,
Ludewig et al used a weighted hybrid of item-based collaborative

filtering; idf and session based knn; and also matrix factorization

techniques.

Name-based approaches. If a playlist contained no tracks, they

used a weighted hybrid of string-matching between playlist and

track names as well as title factorization techniques.

Sparse playlists. Many playlists only contained a track or two.

While these playlists were not empty, they were too sparse for track-

based approaches alone. For these playlists, Ludewig et al used a

weighted hybrid of the track-based and name-based approaches.

In essence, Ludewig et al’s system switches between three hy-

brid approaches –weighted track based, weighted name based or

weighted track/name based– determined by playlist length. Not

only does this method provide accurate recommendations for es-

tablished playlists, but it mitigates the cold start problem of initial

track recommendation.

3 DATASET EXPLORATION
The dataset provided by Spotify challenge contains 1million playlists,

including titles, tracks, artist information, and other metadata. Be-

sides, Spotify has also provided test dataset containing 10,000 playlists

where certain amount of tracks are hidden in each playlist for pre-

diction purpose. For efficiency of our replication, we mainly utilize

the randomly selected 50k playlists from the 1 million provided data

as our training set to generate the original metrics mentioned in the

paper as well as some new metrics added by us. But for the purpose

of data exploration, we also explore the impact of size difference

on the basic metrics evaluation on the dataset, and we find out that

larger number of data would actually induce worse performance on

metrics.

Size RP Clicks NDCG

50k .225 1.62 .439

100k .226 1.497 .439

500k .201 1.722 .400

1m .194 1.872 .387

Table 1. Different sized playlist data and their correspondingmetrics results.

In general, lower RP indicates worse precision result, higher num-

ber of clicks means that users need to make more average click

actions to the right song, and lower NDCG means the top recom-

mended item qualities are not as good for large-sized dataset com-

paring to the smaller ones. We assume this is caused by the larger

variation of training/test split during the offline training session

when the dataset size increased. Theoritically, larger dataset would

decrease generalization error, which would be good for online train-

ing, but we didn’t have a chance to verify so.

4 TECHNICAL EXPERIMENTS

4.1 Initial Replication
At the beginning of replication, we encountered multiple challenges,

including shortage of computational resources, packages/installation

bugs, obsolete dependencies, poor documentation of the code, and

ambiguous taxonomy. To solve those problems, we first tried multi-

ple different remote virtual machines, finally switched back to local

laptop to speed up the computation and increase memory allowance.

Then we debugged some minor issues with the original code and

updated latest library dependencies for the repository. Finally, we

tried to read and understand the code logic line by line and figured

out the main idea behind the paper.

After all the debugging and preparation steps, we were able to

replicate some initial metric results for some of the major methods

mentioned in the paper. As shown in 2, we get pretty close results in

RP, Clicks, and NDCGmetrics on our randomly sampled 50k dataset

comparing to the ones calculated by Ludewig et al[2].

Reported Results Calculated Results

Method RP Clicks NDCG RP Clicks NDCG

idf-knn .208 2.302 .411 .218 2.052 .431

s-knn .198 2.253 .398 .213 2.034 .422

item-cf .205 2.571 .379 .215 2.068 .399

als-mf .184 2.544 .375 .206 2.106 .411

string-match .097 6.828 .209 .109 5.216 .239

title-mf .102 7.617 .223 .114 6.704 .248

combined .214 1.915 .416 .225 1.62 .439

Table 2. Results reported in Ludewig et al [2] compared to results from our
initial replication. Both experiments were run on a 50k sample from the
original 1M Spotify dataset.

4.2 Parameter Tuning (Similarity)
Ludewig et al’s [2] original work uses cosine similarity for their

nearest neighbor based experiments. While they do not elaborate

on this decision in their paper, we suspect this is because their knn

approaches are item and session based rather than user based. We

extended this work by running their knn approaches with a pear-

son coefficient similarity metric. 3 demonstrates that the pearson

cofficient performs worse across RP and NDCG. Our results support

Ludewig et al’s decision to optimize their system’s performance by

using cosine similarity instead of pearson similarity.

Method RP Clicks NDCG

idf-knn .209 2.052 .398

s-knn .198 2.034 .397

item-cf .178 2.064 .356

Table 3. Results from replicating the original algorithms with pearson simi-
larity instead of cosine similarity.

4.3 SVD Algorithm Addition
After replicating the Ludewig et al’s initial system, we explored

(1) how an svd-based recommender system would perform against

, Vol. 1, No. 1, Article . Publication date: February 2021.

Replication Assignment • 3

the techniques used in the original experiment (2) how the original

hybrid recommender system would perform with if it also included

an SVD recommender.

In order to integrate an SVD algorithm we used the ’Surprise’

python package, which requires a user-item ratings matrix. First, we

used Ludewig et al’s original method to mimic a ratings matrix in the

context of the automatic playlist continuation task. The playlists cor-

respond to the users and the contained tracks are implicit feedback

signals to construct a binary user-item “rating” matrix. [2]

We then train our SVD algorithm on the 50k small dataset with

the feature dimension implicitly chosen by "Surprise" package. The

results of our SVD algorithm is shown in table 4. It can be seen

that our algorithm doesn’t outperform Ludewig et al’s results. The

reason might be the intrinsic limitation of SVD algorithm to predict

new users/playlists. Since 50k dataset is only a small proportional of

the original 1M dataset, most of the playlists in testset haven’t been

seen by SVD algorithm before, resulting in a cold start problem. Such

drawback would make the prediction unstable. And it’s believed

that with a larger sampled dataset, this problem can be minimized.

However, due to the time limitation, we haven’t got a chance to test

on a bigger dataset.

The last row shows the results we integrate our SVD algorithm

into the combined recommender. Even thought single SVD algo-

rithm doesn’t show better performance, integrated one do show

an improvement in RP, clicks and NDCG compared to reported re-

sults in table two. This indicates we add variability in the combined

algorithm and thus improve the overall performance.

Method RP Clicks NDCG Recall F1 RMSE

diskknn .218 2.052 .431 .210 .320 .881

sknn .213 2.034 .422 .202 .310 .887

iknn .215 2.068 .399 .209 .317 .882

implicit .205 2.106 .411 .187 .293 .896

smatch .109 5.216 .239 .108 .172 .939

imatch .115 6.704 .248 .109 .174 .940

svd .049 9.524 .136 .049 .087 .974

combined .217 1.660 .420 .217 .330 .879

Table 4. Results from replicating the small dataset with SVD algorithm.

5 EVALUATION METHODOLOGY

5.1 Original Evaluation
Ludewig et al [2] evaluated their system across the three metrics

Spotify used to assess the quality of submissions: R-precision (RP),

normalized discounted cumulative gain (NDCG), and recommended

songs clicks. “The higher the R-precision and NDCG, the better.

However, lower recommended songs clicks indicates better perfor-

mance." A more detailed description of performance metrics can be

found in Zamani et al’s [4] survey of challenge submissions.

5.2 Additional Metrics
In addition to the original evaluation metrics, we explored the sys-

tem’s performance across RMSE, recall and F1.

RMSE.We chose to calculate RMSE because the original paper

did not use any accuracy metrics. We computed RMSE by comparing

the prediction of whether a track is in a playlist continuation to the

ground truth from the dataset. Therefore, our RMSE is between 0-1.

Our results (see figure 1) demonstrate that none of the recommender

algorithms have a significantly high amount of accuracy and don’t

necessarily align with NDCG performance. For example, implicit

has better precision that iknn but worse accuracy. We suspect both

of these shortcomings are because none of these algorithms were

optimized for accuracy. In the competition instructions it is made

clear that entries will only be evaluated on top-n metrics (i.e., RP and

NDCG) and click through rate. While no explanation was provided

in the challenge description, these metrics make sense given the

nature of playlist continuation. In effect, most people do not listen

to playlists for an infinite amount of time. Therefore, it makes more

sense to optimize a top-n list of tracks that to optimize for overall

accuracy across all of the tracks.

Recall & F1. Similarly, none of these algorithms were optimized

for overall recall and f1. Therefore, they perform quite poorly on

both of these metrics. We can see that these algorithms were op-

timized for top-n performance when we compare R-precision and

ndcg scores to recall and F1 scores.

Low recall performance makes sense for the playlist continuation

task because there isn’t a high cost associated with false negatives.

A Spotify user can remedy a false negative by adding a certain track

to either their play queue or the original playlist. Moreover, there

isn’t a high cost associated with false negatives either. A user can

easily skip a song if they feel like it’s not relevant. Consequently,

low performance on an overall F1 score, which measures the balance

between false positives and false negatives, is probably not a major

issue. However, a user can get frustrated if they have to skip the

first five track recommendations the system offers. Therefore, top-n

metrics are more relevant to the playlist continuation task.

6 DISCUSSISON

6.1 Replication is hard (Even with open source materials)
For brevity’s sake, we didn’t mention the myriad of other papers

we read, code we downloaded and datasets we explored before

deciding to replicate Ludewig et al’s work. However, it’s important

to note that this paper is part of an underwhelming minority of

papers that have made both their code and their dataset publicly

available. Furthermore, we believe the only reasons we had access

to the code and dataset were because (1) Spotify was responsible for

hosting the dataset and (2) public code was a necessary condition

for competitors. We hope Ludewig et al’s work serves as an example

of a successful partnership between researchers and a platform to

create publicly available recommender systems.

While we admire the shared code and data, this project demon-

strates that publicity is not enough to incentivize replicable work.

Themajority of our time on this project was spent on the initial repli-

cation of this project. As mentioned earlier in this paper, Ludewig et

al’s code on GitHub relied on deprecated packages, an ambiguous

amount of computational resources and sometimes flawed code.

Moreover, debugging their code was arduous due to poor code doc-

umentation and interpretability. As the RecSys community moves

towards a focus on reproducability, we anticipate work such as

, Vol. 1, No. 1, Article . Publication date: February 2021.

4 • Ajmani, Hu & Sun

ours can serve as a cautionary tale to not conflate publicity with

reproducability.

6.2 Replication can justify implicit design decisions.
Our experiments supported two main design decisions not made

explicit in Ludewig et al’s paper. First, our results support that

using cosine similarity over pearson similarity increases algorithm

performance. We assume that this was an intentional decision given

that cosine similarity is canonically better suited for item based

collaborative filtering.

Second, the recommender’s poor performance on RMSE, f1 and

recall metrics supported our suspicion that the recommender was

optimized for top-n lists. While optimizing for rp, clicks@500 and

ndcg@500 makes sense, Ludewig et al’s system was built for a

competiton– the original authors never mentioned why Spotify was

valuing thesse metrics in particular. For example, we only under-

stood the unimportance of false positives when we considered why

recall was consistently lower than NDCG.

6.3 Not every recommendation task is a user-item
matching problem

We found it really interesting that Ludewig et al didn’t use any

“user-based" collaborative filtering techniques. Rather, they focused

on item and session based methods, only resorting to title based

methods when confronted with the cold start problem. This decision

makes a lot of sense; the dataset itself didn’t have any representation

of users. However, this absence of user-based data caused a lot of

problems when we attempted to apply an svd algorithm to the

dataset. As mentioned in 4.3, the root of these problems was that

svd requires a user-item-ratings matrix; something that we could

only mimic given the dataset. We hope that as more recommender

system packages, such as “Surprise," get built, they incorporate more

complex data representations or provide more examples of how to

adapt non-traditional datasets to their methods.

7 FUTURE WORK

7.1 Meta re-ranking
Given time constraints on this project, we did not replicate Ludewig

et al’s [2] submission to the creative track of the challenge. Be-

cause the creative track allowed for the use of supplemental data,

the authors used track metadata from the Spotify API to enhance

their original recommendations. Future work could build off of our

initial replication and include Ludewig et al’s [2] meta re-ranking

algorithm.

7.2 Continuation of challenge
While the RecSys18 challenge ended in July 2018, Spotify continued

the challenge on an AI crowd competition platform called AICrowd.

The challenge is still open today with the same dataset and task

description as the RecSys18 challenge documentation. To date, there

have been 508 submissions on the AICrowd challenge with 77 teams

competing for "bragging rights." [1] As of Dec 14, 2021, submissions

are still bring made every day, implying that competitors are still

active. We propose two potential paths for future work based on

Spotify’s decision to continue the challenge.

First, there are lingering question about why Spotify felt the need

to acquire more submissions than those submitted in 2018. Clearly,

if work such as Ludewig et al perfectly met Spotify’s needs, they

wouldn’t spend the resources maintaining a crowdsourced compe-

tition. Future work could potentially explain this phenomenon by

comparing RecSys18 submissions to top AICrowd submissions.

Second, the slew of new recommenders submitted to AICrowd

raises questions about reproducability outside of academia. It would

be interesting to compare the difficulty in reproducing an open

source AICrowd system with Ludewig et al. [2]

7.3 Future Music Recommendation Tasks
In our discusssion, we discussed how music recommendation tasks,

such as playlist continuation, go beyond the typical user-item rec-

ommendation problem. As Spotify tries to maintain it’s market

share in the midst of competing products, such as Apple Music and

YouTube, it has introduced more complex recommendation features.

For example, in September 2021 Spotify released a playlist blending

feature which creates a shared, personalized playlist amongst two

users [3]. These additional features open up new opportunities to

test reproducability or applicability to other domains such as shared

personalized playlists on YouTube or shared feeds on social media

sites, namely Instagram.

BIBLIOGRAPHY
[1] Spotify million playlist dataset challenge.

[2] Ludewig, M., Kamehkhosh, I., Landia, N., and Jannach, D. Effective nearest-

neighbor music recommendations. In Proceedings of the ACM Recommender Systems
Challenge 2018 (New York, NY, USA, 2018), RecSys Challenge ’18, Association for

Computing Machinery.

[3] Spotify. How spotify’s newest personalized experience, blend, creates a playlist

for you and your bestie, Sep 2021.

[4] Zamani, H., Schedl, M., Lamere, P., and Chen, C. An analysis of approaches

taken in the ACM recsys challenge 2018 for automatic music playlist continuation.

CoRR abs/1810.01520 (2018).

, Vol. 1, No. 1, Article . Publication date: February 2021.

	Abstract
	1 Introduction
	2 Previous Work
	3 Dataset Exploration
	4 Technical Experiments
	4.1 Initial Replication
	4.2 Parameter Tuning (Similarity)
	4.3 SVD Algorithm Addition

	5 Evaluation Methodology
	5.1 Original Evaluation
	5.2 Additional Metrics

	6 Discussison
	6.1 Replication is hard (Even with open source materials)
	6.2 Replication can justify implicit design decisions.
	6.3 Not every recommendation task is a user-item matching problem

	7 Future Work
	7.1 Meta re-ranking
	7.2 Continuation of challenge
	7.3 Future Music Recommendation Tasks

	Bibliography

