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1 Introduction

For this project we attempted the novel application of Deep Reinforcement Learning (DRL) to the
game Super Crate Box [[L]. Due to a myriad of difficulties stemming from the lack of a convenient
training environment for the game, we determined partway through that best option for our project
was to switch focus. Instead we implemented a Deep Q-Network (DQN) in PyTorch which learns to
play games from the OpenAl Gym library [2]]. We used two refinements of the basic DQN algorithm
called Double DQN and Dueling DQN, and tested our implementations against the game Breakout.

The study of how intelligent agents can be implemented in a game has practical applications to the
game industry as a whole. Many games include Al players that can work with or against a human
player; however, these Al players often lack a realistic feel. Usually, the behavior of the Al is dictated
by a simple algorithm that eventually becomes predictable. By creating an agent with a neural
network, we can make our agent feel more unique and realistic. Additionally, DRL agents can surpass
human performance, so they can be used to create adversaries which are stronger than another human
could be. Even though Super Crate Box and the Gym environment games are relatively simple, the
DRL algorithms that we explored can also be applied to more complex games.

This paper summarizes the background related to DQNs, then reports on the successes and failures of
our attempts with DRL relating to Super Crate Box and the OpenAl Gym environments.

2 Background

Reinforcement Learning (RL) is a branch of machine learning in which agents seek to maximize
their cumulative reward in a given environment. They accomplish this by taking different actions
depending on the state of the environment [3]]. RL has been applied to many research areas including
games, self-driving cars, finance, healthcare, and robotics [4].

One type of RL algorithm is called ()-learning, in which the goal is to estimate the function ), which
maps the current state and possible actions to future rewards. Maximizing () is therefore the same as
maximizing the cumulative reward [3]. For a set of states S and set of actions A, with s; € .S and
a; € A,
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[S]. There are techniques for learning () without using deep learning; one such technique is learning
a (Q-table. A (Q-table is simply a map from a discrete set of states and actions to a reward. The
state must be discretized (if it is not already) to obtain a finite set of state-action pairs. () is then
learned as the agent explores its environment and experiences rewards for actions. However, as the
dimensionality of states and actions increases, the size of the (-table increases exponentially. This
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causes problems with memory usage and algorithmic instability, so the naive ()-table approach may
not be effective for large-scale problems [3]].

An alternative method which does not explicitly learn @) is to use traditional deep learning techniques.
One could record human experts playing a game, obtaining a large dataset of game states and “correct”
actions given that state. Then, using traditional neural networks and that dataset, one could train a
model to output an action based on that data. Although this technique could theoretically train Al
to play a game, it also has a few pitfalls. For one, the Al will be limited in performance to the skill
of the player from whom the data came — it would be scarcely impressible to achieve better than
human-level performance. Secondly, the Al may not generalize well to new situations that it has not
seen before. For instance, a new level in the game may have a new feature which the Al has never
been exposed to.

2.1 Deep Q-Networks

Compared to the incapability of traditional ()-learning methods and deep learning techniques, the
merge of those two methods, which is called deep-Q-network (DQN) method, helps to avoid some of
their issues. This technique was introduced by DeepMind Technologies in 2013, when they published
a breakthrough paper which applied deep neural networks to seven different Atari games. Their Al
was better than any other contemporary Al at six of these games, and even surpassed human experts
at three of the games [6]]. The DQN method accepts any type of input, but commonly uses only the
pixels and game scores as inputs. Then it uses deep learning techniques to attempt to map these
inputs to their () values for each possible action. Compared to traditional model-free RL methods,
which are either quickly made obsolete as the dimensionality of states and actions increases, or need
to collect a huge amount of data from human experts, DQN scales effectively and also generalizes
effectively [7]. Because of these advantages, we are using DQN as our fundamental method.

The DQN is one of the more studied areas of reinforcement learning, and as such multiple improve-
ments to the standard DQN exist. Three such improvements are Double DQN [8]], Dueling DQN [9],
and prioritized experience replay [[10].

2.2 Double DQN

The Double DQN differs from the original DQN method proposed by Deepmind in that it uses
both the target network and the online network in its target function. Formally, we can denote the
value function for deep Q-learning as (s, a, @), where s is a state, a is an action, and 6 denotes the
parameters of the network. The target function Y; of the original DQN can be written as

Yi = Ry +7m3XQ(St+1va70t)'

At each step, we use a greedy policy by choosing to take the action that maximizes (). So this function
is equivalent to
Y; = Riy1 +vQ(Sty1, argmax,Q(Si11,a,0;), 0;).

However, this causes problems because we use the same network to choose an action and to evaluate
its value. It can be shown that this approach leads to an overly optimistic estimate of ), which can
cause suboptimal results in practice [§]. The Double DQN approach decouples the action selection
step from the evaluation step by using a different network for each step. This can be written as

Yy = Rip1 +7Q(Se41, argmax,Q(Si11,a,6;), 6;)

where the online network parameters 6; are replaced by the target network parameters 9; for the
evaluation step.

2.3 Dueling DQN

The Dueling DQN method attempts to increase the sample efficiency of a standard DQN by partition-
ing ( into two sections. The first section is the value of the state itself, and the other section is the
advantage given by each of the actions, were they to be taken. These two sections are implemented
as separate sets of fully-connected layers. The estimated state value is a scalar V (s, 8, 3), and the
estimated advantage is a vector A(s, a, 0, ), where a and 3 denote the parameters of the hidden



layers for the advantage and the state value, respectively. These are combined in the last module of
the network to estimate () as

Qs.0.0.0.8) = V(s.0.0) + (A5.0.6.0) - mox Al 0.00)).

a’'€

This approach encodes the knowledge that some states may be more valuable then others, which
allows the network to learn this information more effectively. No matter which action is taken, the
state value of the network will always have a gradient. Normally with a DQN, only the taken action
will have a gradient, so the dueling DQN improves the sample efficiency of the algorithm [9].

2.4 Prioritized Experience Replay

Prioritized experience replay attempts to increase sample efficiency by adjusting the method by which
experiences are chosen for replay. In certain environments, the reward may be distributed in such
a way that the network benefits more from replaying certain experiences over others. Therefore,
intelligently selecting which experiences to replay should increase the speed at which a model can
learn [[10].

2.5 Deep Neuroevolution

One last way to train a neural network, which differs significantly from the previously mentioned
methods, is a traditional genetic evolution method dubbed deep neuroevolution [11]. This method
generates a population of agents, tests them, then selects the best from each generation to seed then
next. By generating the new population based off the elite performers in the previous generation, the
population should converge to elite performers.

For Super Crate Box we attempted to implement a Double DQN and the deep neuroevolution moethds,
before we decided to focus on the OpenAl Gym environment Breakout game. For Breakout we
implemented the Double DQN and Double Dueling DQN methods.

3 Super Crate Box

In order to apply DRL to Super Crate Box, our first major task was to set up a basic RL environment
for the game. Our approach was modelled on the functionality of the OpenAl Gym library [2], which
allows the user to directly track the following information:

1. Current game state
2. Set of possible actions
3. Reward function

4. Whether or not the game is finished.

For Super Crate Box, the current state, score/reward, and “game over” status are all represented by
the pixels of the game screen, an example of which is shown in Figure[I] The possible actions —
moving left, moving right, jumping, and shooting — are input as key presses. Therefore, an agent
playing the game must be able to examine the pixels of the screen in order to obtain the 4 values
listed above, and must be able to emulate key presses in order to control the character.

3.1 Successes

Because Super Crate Box does not having an existing implementation of an analogous Gym environ-
ment, it is difficult to work with for a few different reasons which we will go over in the Continuing
Issues section. Before that, we would like to highlight the things that went well.

3.1.1 Implementation of Agents

As a baseline, we were able to implement a simple agent that chooses an action randomly, and
can interact with the game window using the Win32 API [12] to emulate key presses. Next, we
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Figure 1: An example image from the game: Super Crate Box

implemented a full DQN pipeline which examined the pixels of the screen in order to obtain the
current game state, current score, and whether the game was over or not. Also, the DQN was able to
select actions based on the current game state, so the entire DQN pipeline was functional. However,
we were not able to train the agent to achieve better than random performance.

3.1.2 Score Extraction

We wanted to reward our agent for collecting crates, since that is the primary score metric of the
game. However, since the score is represented as pixels on the screen, extracting it can be tough. We
tried OCR using the Python interface for Google’s Tesseract software [[13]], but it had difficulties with
the font and low resolution. Because Super Crate Box is a pixel-art, low-resolution game, the font is
blocky and this likely caused issues for Tesseract. We attempted to preprocess the image by resizing
and applying a Gaussian blur to make this font more recognizable. This did not improve Tesseract’s
ability to extract the digits. Finally, we attempted to allowlist only digits and change Tesseract’s
configuration settings — this too was unsuccessful, so we decided to try another route at getting the
score.

Before we present our current solution, allow us to introduce two more confounding factors. Score
extraction is made more complicated due to “screenshake" and enemy interference. Screenshake is
a technique for game developers to emphasize the impact of in-game animations, where the entire
screen is rapidly translated by just a few pixels, giving the impression that the game world is shaking.
This causes issues for our purposes because the score is shaking as well, which means that on any
given frame, the score is not necessarily at the exact same pixel coordinates. The second confounding
factor is the introduction of enemies to the game world. When enemies are added to the game, they
fall into the world through an entrance where the score is located, so any score extraction algorithm
needs to be robust to irrelevant pixel changes, such as an enemy dropping through the score.

Our solution to the score extraction problem relied on taking multiple cropped frames as a group and
making comparisons among them to discard irrelevant information. When a new frame differed in a
significant way from the other frames in an area near the score, we assumed that the score changed,
and registered that the agent had collected a single crate. Our algorithm was reasonably robust to
both false positives and false negatives, but sometimes a particularly poorly placed enemy would
cause a misreading.

3.1.3 Action Set

In order for the agent to meaningfully travel and interact with the environment, we needed to fully
represent its actions in an action set, from which the agent could select its actions at each state.
Unfortunately this wasn’t as simple as we initially thought, due to two constraints. First, the agent
must be able to hold down a button across multiple states, and the agent must be able to perform
multiple actions at once.

In order to fully traverse the environment, the agent must be capable of jumping at least a certain
height. This means that at each new state, the agent must have the ability to hold down the jump



button. If the agent re-presses the jump button instead of holding it down, it will jump many times
but only very short jumps instead of being able to jump once at a higher height. Additionally the
agent needs to be able to move left and right while jumping, or else it will fall directly down, instead
of being able to jump up and onto another platform. The agent will likely also benefit from being
able to attack while moving, and possibly attack while moving while jumping!

We attempted to satisfy both constraints by pausing the agent for a fraction of a second while it was
holding down a button. The game would continue uninterrupted, carrying out the agent’s selected
action. Once the time had passed, the agent would be unpaused and allowed to select a new action.
The down side of this was that the agent had to commit for that amount of time to perform that
action, even if that meant it would surely get a game over. We switched to allowing the agent to
select any number of actions using a pseudo-boolean array, where if the action’s index was true, the
button would be pressed/held, and if it was false, the button would be released. However this is not
traditional in terms of standard DQNs, so we ran into trouble implementing it.

The solution we settled on was a traditional DQN which selected a single action, where
the set of actions included certain combinations of key presses. Since the agent needed
to be able to jump and move at the same time, the action space we defined was
{Left, Right, Jump, LeftAndJump, Right AndJump, Shoot}. It seemed to work in terms
of the agent’s expressibility. However, this action space did not allow the agent to move and attack at
the same time, since incorporating this ability would have resulted in a fairly large action space.

3.1.4 Reward Function

Another problem that must be overcome for all RL implementations is determining an appropriate
reward function. The main metric of success in Super Crate Box is the collection of crates. This
serves as your final score when the player inevitably dies. Therefore we certainly wanted to reward
the agent when a crate is collected. We settled on a base reward of 1 for the frame in which a crate is
collected. In order to encourage crate collection, and avoid training an agent whose only goal was to
survive, we applied a reward of —.01 for each frame where the agent did not collect a crate. If this
penalty did not exist, the agent would potentially spend a large amount of time between trying to get
crates, since spending one second would be the same reward as spending ten seconds. Finally, we
wanted to apply a steep penalty when the agent is killed by an enemy, since that ends the game. We
initially decided on a penalty of —100. However, tuning the reward function is often a challenging
problem, and we suspected that a different reward function could have led to better results.

3.1.5 Deep Neuroevolution

We also explored the idea of using a deep neuroevolution method instead of the double DQN. With this
method, we were able to train an agent to survive in the game for a long period of time. Unfortunately,
the elite agents we found tended to use a naive strategy of staying in the same place while repeatedly
jumping and shooting. So when we tried to adjust these agents to move around the screen and actually
collect boxes, this approach was unsuccessful.

3.2 Continuing Issues

There were a few issues with Super Crate Box that we were not able to overcome and contributed to
our decision to switch focus. In this section we go over a few of them.

3.2.1 Character Model Randomization

One issue that we were not able to disable in the game was the variation in character models. Each
time the game begins, it selects a different visual which represents the player character, as shown in
Figure[2] Unfortunately we cannot disable this, so our DQN would have to learn that the character
can look different, which may have been one of the issues that made it more difficult to create an
effective model. While we believed this to be within the realm of possibility with our DQN, other
issues compounded on this uncertainty and ultimately made us decide to change focus.
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(a) A character model that looks like a (b) A possible character model that
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Figure 2: Two possible character models

3.2.2 Choosing a Reward Function

We considered a few different ways of adjusting the reward function to improve the agent’s ability.
First, we could consider the distance to the next crate as a factor in the reward function. This would
introduce the challenge of extracting the agent’s position from the game world, but it would result
in a reward function which could guide the agent toward getting more crates. Another potential
consideration was the number of enemies, since having more enemies on the screen means more
chances of dying. Again, the difficulty in including this information would be extracting it from the
pixels of the screen, but it would allow us to encourage the agent to attack enemies, which is good for
the long term survival and performance of the agent.

While these seemed like promising methods to improve the performance of our DQN, due to the
inconveniences of working with the raw pixel input, it wasn’t feasible. For instance, locating the
player character on the screen was a difficult task. One tactic would be to scan all the pixels for a
specific color, assuming there is a unique color in the player model. However, due to the issue above
where the character model can vary, we could not assume anything about the appearance of the player.
Another tactic would be to keep track of the player model as a separate representation of the game
state, which we would update based on the action the agent selects and the world geometry. However
this was also infeasible due to the amount of game logic that we would need to duplicate, as well as
the possibility of drift compounding slowly.

3.2.3 Frame Per Second Lock

The final nail in Super Crate Box’s coffin was the framerate lock. Since Super Crate Box has to
run as a program on the screen, its framerate is locked to 60 FPS. Even for very simple games, a
huge number of frames may be needed before DRL can achieve good performance. For example,
DeepMind trained their DQN on 10,000,000 frames [6]]. Super Crate Box is by no means complicated,
but it is more complicated than a game like Breakout, for instance. Therefore at a conservative
estimate of 10,000,000 frames, at 60 frames per second, the training time would be two straight days.
Furthermore, this assumes the DQN is running at 60 frames per second and that it lines up perfectly
with the refresh rate of the monitor. Unfortunately that is likely not the case, and causes the projected
training time to inflate even more. Due to this inconvenience, the development of the DQN would be
extremely problematic, since we would not be able to observe whether or not our DQN is working
until more than two days after we tried to test it.

4 Atari

In light of the inadequacies of Super Crate Box, our group decided to shift our focus to the Atari
Gym environment, where we implemented Double DQN and Double Dueling DQN agents for the
game Breakout. We used examples from the PyTorch docs [[14] and Keras docs [[15] as a starting
point, but the implementation was our own.

The DQN approach requires tuning a number of hyperparameters, including the batch size, number
of frames used for exploration, learning rate, size of the replay memory, and how frequently to update



running reward: 17.75 at episode 27076, frame count 575

Figure 3: Double DQN agent for Breakout. Y-axis is the score earned on a given life, X-axis is the
episode.

the target network. In most cases, we were able to use the hyperparameters described by DeepMind.
However, due to out-of-memory issues, we reduced the size of the replay memory from 1,000,000 to
100,000. We also found that it was beneficial to gradually reduce the size of the learning rate over
time.

The architecture of the neural network itself also plays a key role, of course. For this problem, we
used three convolutional layers, followed by a sequence of multiple hidden layers. As described
in the Background section, the Double DQN and Dueling DQN use different sets of hidden layers,
which result in a different estimate of () that is then used to optimize the model. Otherwise, we were
able to use the same approach for both of these methods.

Two additional refinements of the environment were necessary to train our agents effectively. We
implemented a frame stacking mechanism similar to that described by DeepMind, in which the
current state of the game is represented as a sequence of the last four observed frames, rather than
just the most recent frame. Additionally, while a game of Breakout is not done until the player loses 5
lives, we considered each life lost to be the end of an episode. This created a more direct relationship
between surviving in the game and getting a higher reward. In the following discussion, the episode
number and the reward are based on a single life in Breakout.

5 Results

For Breakout, we had success training DQN agents in PyTorch. We found that the Double DQN
and Double Dueling DQN methods performed similarly, with the Double DQN performing slightly
better on average. This lines up with our expectations, since the benefits from the Dueling method are
most noticeable when there is a large number of choices for a given environment, and Breakout only
has a few possible actions. In the Dueling DQN paper [9]], they also had a decreased performance
specifically on Breakout.

Figure 3] shows the results for the Double DQN. We can see that there is a clear performance increase
as the agent trains. The figure shown is after 5,750,000 frames, and performance could be expected to
continue to increase. However, due to the time limit on Google Colab (even with the Pro version) we
were not able to run the simulation for longer than that. The average reward per life at this point was
17.5, but we can see that the highest performers were much higher than that, over 200 in some cases.
So there is a large disparity between the highest performers and the lowest performers. Presumably
with more training, this disparity would go away.

Figure [ shows the results for the Dueling DQN. As expected, these results are similar to those of the
simpler Double DQN. The average reward was slightly lower at this point, but the best performer



running reward: 13.80 at episocde 27460, count 3750000

Figure 4: Dueling DQN agent for Breakout. Y-axis is the score earned on a given life, X-axis is the
episode.

achieved a reward of nearly 300. Again, these results would likely stabilize over time. While the
Dueling DQN did not perform better for Breakout, we would expect to see improved results if we
applied this method to a game with a larger action space.

A video of our partially trained agent can be viewed at the following URL:
https://youtu.be/NCgkmgzbw70

The working codebase can be viewed here:
https://github.umn.edu/voigt227/The ABC

6 Conclusion

In this paper, we presented our attempt to create a gameplay agent for the game Super Crate Box by
using Deep Reinforcement Learning. We first set up an RL environment similar to the functionality of
the OpenAl Gym library and then tried to implement both the DQN method and the genetic evolution
method to train the agent. Due to the lack of training time, character model randomization and other
difficulties, we were not able to successfully train an agent which can play the game. Instead we
switched our focus to the OpenAl Gym game Breakout. By using two refinements of the basic DQN
algorithm, the agent was able to achieve an average reward of 17.75 and maximum reward of ~ 250
with the Double DQN method, and an average reward of 13.90 and maximum reward of ~ 300 with
the Dueling DQN method.

One major takeaway is that while DRL is a promising and exciting field, it also comes with its own
unique set of challenges. The implementation of any DRL agent requires tuning many hyperparame-
ters. It also requires defining an appropriate reward function — a process which is domain-specific
and necessitates trial and error. Additionally, training takes a long time, with millions of frames
required for Atari games, and the training process introduces non-determinism. A recent paper [16]]
highlighted some of the issues with reproducibility in DRL, and emphasized the need for standardized
experimental techniques and evaluation metrics.

With more time and better methods for extracting the environment of Super Crate Box, it might still
be possible to train a DRL agent to play the game. However, while we did not succeed in this domain,
we were at least able to reproduce some of DeepMind’s successes on Breakout. In the process, we
explored some recent advances in DRL, learned more about the challenges associated with it, and
ultimately gained a better understanding of how DRL works in practice.


https://youtu.be/NCgkmgzbw7o
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